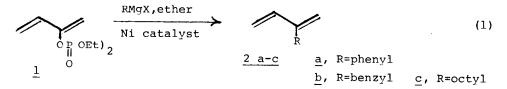
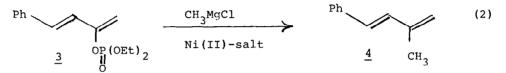
Tetrahedron Letters, Vol.24, No.46, pp 5137-5138, 1983 0040-4039/83 \$3.00 + .00 Printed in Great Britain ©1983 Pergamon Press Ltd.


SYNTHESIS OF CONJUGATED DIENES BY NICKEL-CATALYZED REACTIONS OF 1,3-ALKADIEN-2-YL PHOSPHATES WITH GRIGNARD REAGENTS

Christer Sahlberg, Abdul Quader, and Alf Claesson*

Department of Organic Pharmaceutical Chemistry, University of Uppsala, Biomedical Center, Box 574, S-751 23 Uppsala, Sweden


Abstract. 2-Substituted 1,3-alkadienes were prepared in good yields by reactions of diethyl 1-methylene-2-propenyl phosphate and diethyl 1-methylene-3-phenyl-2-propenyl phosphate with various Grignard reagents in the presence of nickel(II) catalysts.

In a recent communication we described some reactions of diethyl 1,3-alkadien-2-yl phosphates with organocuprates.¹ Since the reactions in most cases proceed via 1,3-substitution (S_N^2 ' reaction) they represent a novel approach to the synthesis of allenes. We did, however, notice the concurrent formation of conjugated diene products resulting from direct substitution of the diethyl phosphate group (*cf.* Eq. 1). Such 2-substituted dienes are valuable intermediates in many syntheses,² especially of natural products, and we therefore tried to optimize their formation. In this connection, it turned out that certain nickel salts are suitable catalysts. Many 2substituted 1,3-alkadienes can thus be obtained from readily available¹ diethyl 1-methylen-2-propenyl phosphates.³

The reaction conditions comprise the following steps: (<u>i</u>) addition of the Ni(II)-catalyst (2.5 mole %) to a Grignard reagent (2.7 equiv.) in ether under nitrogen at room temperature, (<u>ii</u>) after 15 min, addition of the phosphate (1 equiv.), (<u>iii</u>) the reaction was stirred until no starting material was left and (<u>iv</u>) hydrolysis with 0.1 M HCl and ether extraction followed by standard work-up procedures afforded the dienes.⁴ The results of these Ni-catalyzed reactions of the phosphate <u>1</u>¹ with different Grignard reagents (Eq. 1) and the phosphate <u>3</u>⁵ with methylmagnesium chloride (Eq. 2), are summarized in the Table.

Three different Ni(II) phosphine complexes were tested and as can be seen in the Table, the bridged catalysts, NiCl₂ ($Ph_2PCH_2CH_2PPh_2$) = [NiCl₂(dppe)] and

 $NiCl_2(Ph_2PCH_2CH_2CH_2PPh_2) = [NiCl_2(dppp)]$, are superior to $NiCl_2(PPh_3)_2$ (cf. entries 1,2 and 3 in the Table). In the reactions of phosphate 3 with MeMgCl, $NiCl_2(dppe)$ was somewhat better than $NiCl_2(dppp)$. The method is applicable to Grignard reagents derived from phenyl-, benzyl-, and primary alkyl halides. The method does not, however, seem to be applicable to secondary Grignard reagents, since preliminary studies (not shown in the Table) with cyclohexylmagnesium bromide and 1-methylbutylmagnesium bromide indicated only minor amounts (< 5%) of dienes. Further inspection of the Table (entry 7) shows that THF also can be used as the solvent in this reaction.

Entry ^a	Phosphate	RMgX	Catalyst	Diene	Yield (%) ^b
1	<u>1</u>	PhMgBr	NiCl ₂ (PPh ₃) ₂	<u>2a</u>	24
2	<u>1</u>	PhMgBr	NiCl ₂ (dppe)	<u>2a</u>	64
3	<u>1</u>	PhMgBr	NiCl ₂ (dppp)	<u>2a</u>	67
4	<u>1</u>	PhCH ₂ MgCl	NiCl ₂ (dppp)	<u>2b</u>	55
5	<u>1</u>	C ₈ H ₁₇ MgBr	NiCl ₂ (dppp)	<u>2c</u>	78
6	<u>3</u>	CH ₃ MgCl	NiCl ₂ (dppp)	4	57
7 ^C	<u>3</u>	CH ₃ MgCl	NiCl ₂ (dppp)	4	54
8	3	CH ₃ MgCl	$\operatorname{NiCl}_{2}^{-}(dppe)$	4	69

^aMolar ratio of phosphate:Grignard reagent:catalyst is 1.5:4:0.1 ^bGC yield using ethylbenzene as internal standard ^cSolvent THF

REFERENCES AND NOTES

- 1. A. Claesson, A. Quader and C. Sahlberg, Tetrahedron Lett. 1983, 1297.
- 2. K.J. Shea and P.Q. Pham, *Tetrahedron Lett.* 1983, 1003 and references cited.
- 3. Other authors have reported the analogous nickel-catalyzed reaction of 2-chloro-1,3-butadiene with Grignard reagents, see A. Hosomi, M. Saito and H. Sakurai, *Tetrahedron Lett.* 1979, 429.
- 4. The reactions were monitored by GC, using a 2.7 m 5% OV-25 column. The compounds were isolated by preparative GC on a 2.7 m 20% OV-25 column and characterized by NMR and IR spectroscopy.
- 5. After purification on neutral aluminia, this compound was obtained in a yield of 59% following the general procedure described in ref. 1.

(Received in UK 15 September 1983)